Fig.5 Schematic diagram of cold reflection ray-tracing
4. Conclusion
The article introduces the characteristics of the three-field zoom optical system in detail, and uses a 320×240 resolution refrigerated infrared detector to design a mid-wave infrared three-field zoom optical system with three focal lengths of 30mm,100mm and 500 mm, the design process and design results are given.
In the design, two materials are used to correct the chromatic aberration of the system, and the spherical aberration of the system is corrected by the aspheric surface, which improves the imaging quality of the system. The secondary imaging method is used to make the system reach 100% cold diaphragm efficiency. The total length of the system's optical path before turning is 400 mm, and the telephoto ratio reaches 0.8. After two mirrors are used to turn the optical path, the total length is less than 210mm.
The transfer function curve of the system is close to the diffraction limit, and the energy concentration of the enclosing circle is high, indicating that the system has good imaging quality. At the end of the article, the cold reflection is analyzed, and the cold reflection analysis method and analysis results are given. The analysis results show that the cold reflection influence can be ignored. The system is small in size, compact in structure, meets miniaturization requirements, and can be widely used in airborne search camps and rescue night imaging.
The
infrared optical lens designed and manufactured by Quanhom has the significant advantages of lightweight and high resolution and can be effectively monitored in a variety of complex and harsh environments. If you want to get further related services, you can send us your needs, and we will give you a satisfactory answer as soon as possible.
As an experienced manufacturer of
Opto-electromechanical components, Quanhom is equipped with a professional quality inspection system and a comprehensive management team and enjoys a high reputation in the industry. Our products are sold all over the world and are used in all walks of life. Our thoughtful one-stop shopping service has also received unanimous praise from customers. If you are interested in our infrared optical lenses, please contact us immediately!
Authors: Fan Zheyuan, Gao Limin, Zhang Zhi, Chen Weining, Yang Hongtao, Zhang Jian, Wu Li, Cao Jianzhong
Journal source: Vol.43 No.2 Infrared and Laser Engineering Feb.2014
Manuscript received: 2013-06-14; revision date: 2013-07-19
References:
[1] Zhang Mingyi, Li Baoping, Wang Zhongnan, et al. Design of the switch-zoom dual-field-of-view infrared optical system with hybrid refractive-diffractive [J]. Infrared and Laser Engineering, 2008, 37(5): 850-853. (in Chinese)
[2] Chen Lvji, Chen Jinjin, Li Ping. A novel stop-zoom LW infrared dual field-of-view optical system design[J]. Infrared Technology, 2011, 33(7): 406-410. (in Chinese)
[3] Zhao Xinliang, Wang Haixia, Cui Li, et al. Design of dual- field scanning LWIR optical system [J]. Infrared and Laser Engineering, 2011, 40(8): 1517-1520. (in Chinese)
[4] Dong Keyan, Sun Qiang, Li Yongda, et al. Design of a refractive/diffractive hybrid infrared bifocal optical system[J]. Acta Physica Sinica, 2006, 55(9): 4602-4606. (in Chinese)
[5] Luo Shoujun, He Wubin, Li Wenhu, et al. Design of middle infrared continuous zoom optical system with a large FPA [J]. Optics and Precision Engineering, 2012, 20(10): 2117- 2122. (in Chinese)
[6] Zhou Hao, Liu Ying, Sun Qiang. Mid-infrared zoom optical system with ratio of 25[J]. Acta Optica Sinica, 2012, 32(4): 0422001-1-0422005. (in Chinese)
[7] Tao Chunkan. Zoom Lens Design [M]. Beijing: Beijing National Defense Industry Press, 1988: 33-39, 140-153. (in Chinese)
[8] Fan Zheyuan, Yang Hongtao, Qu Enshi, et al. Design of long-wave infrared scan system with large field and large aperture [J]. Infrared and Laser Engineering, 2012, 41(10): 2740-2744. (in Chinese)