4. Conclusion
For infrared optical systems, the temperature has a great influence on the imaging quality of the optical system. Designed an infrared lens with a wide operating temperature range through the integrated design method of optical, mechanical, and thermal, and further analyzed the deformation of the infrared lens at different temperatures due to the deformation of the mirror surface, the change of the lens interval, and the change of the refractive index temperature coefficient. Factors such as changes in the image quality of the system, the analysis results show that the designed infrared lens has good image quality at -40°C ~+60°C.
The optical-mechanical-thermal integrated design method and optical-mechanical-thermal integrated analysis method used in this paper have important reference values for the design and analysis of similar optical systems.
As an expert in infrared optical lens research for many years, Quanhom can give you some professional guidance to a certain extent. If you want to get a more comprehensive and detailed solution after reading this article, please feel free to contact us.
We are an experienced manufacturer of Opto-electromechanical components, dedicated to providing users with a variety of high-quality infrared thermal imaging lenses. We take the needs of customers as the first priority and comprehensively control the quality of our products. For this reason, we are equipped with a strict quality inspection system to control the design, manufacturing, and export of the products. If you are interested in our infrared thermal imaging lens, please contact us immediately!
Authors: Li Fu, Ruan Ping, Xu Guangzhou, Ma Xiaolong, Yang Jianfeng, Lu Di
Journal source: Journal of an Applied Optical Vol.32 No.3 May 2011
Received date: 2010.9.14; revised date: 2010.11.08
References:
[1] ZHANG Yun-qiang. Application study of athermalizing air-to-air missile systems [J]. AERO WEAPON-RY. 2006. (3): 27-30. (in Chinese with an Englishabstract)
[2] Li Jie. ZHANG Zhi-ming. FENG Sheng-long. Pas-sive athermalisation technique of infrared optical system loading in missile [J]. Infrared Technology. 2005.27 (3): 196-201. (in Chinese with an English abstract)
[3] WANG Xue-xin. JIAO Ming-yin. Athermalization design for infrared optical systems [J]. Journal of Applied Optics, 2009, 30(1): 129-133. (in Chinese with an English abstract)
[4]JAMIESON H Athermalization of optical instruments from the optomechanical viewpoint (J). SPIE. 1992. CR43: 131-159.
[5] PHILPIP J ROGERS. Athermalization of IR opticalsystems [J]. SPIE. 1991. CR38:69-94.
[6] Li Fu. RUAN Ping. MA Xiao-long. et al. Methods of opto-mechanical analysis with Zernike polynomials [J]. Journal of Applied Optics, 2007, 28(1): 38-42. (in Chinese with an English abstract)
[7] CULLIMORE B. PANCZAK T J. Baumann, Inte-grated analysis of thermal/structural/optical systems[JJ. SAE, 2002-01-2444: 1-8.
[8] LIU Ju, XUE Jun, REN Jian-yue. Review of re-search on integration design of structural, thermal and optical analysis with key technique of space camera [I7. Journal of Astronautics, 2009, 30(2): 422-429. (in Chinese with an English abstract)