Analyzing Table 3, it can be seen that given a 300-level contamination on the surface of the primary mirror, the signal-to-noise ratio is significantly reduced as the primary mirror substrate defect level increases. In addition, when the defect level of the main mirror substrate remains unchanged, as the sky background radiation temperature rises, the influence of the contamination on the surface of the main mirror and the different defect levels of the substrate on the signal-to-noise ratio gradually decreases.
2.3.4 Discussion on the tolerance of system optical components
During the operation of the infrared optical system, when the contamination on the surface of the optical element and the defect level of the substrate are within a certain range, the detection performance of the system can be considered basically unchanged, and when the level of mirror contamination and substrate defect exceeds this limit, the system The detection performance decreases rapidly, and the allowable range of pollution and defect levels is the pollution tolerance of the system.
For infrared optical systems, the pollution tolerance of optical components can be defined as: the relative change of the signal-to-noise ratio before and after pollution needs to be controlled at about 10% to ensure effective detection of weak signals when the signal-to-noise ratio is low.
In order to ensure the detection performance of the system, that is, the change in signal-to-noise ratio caused by pollution and defects cannot be greater than 10%. According to the simulation calculation in section 2.3.3, it can be known that when the surface contamination of the main mirror is given at 300 level, when the substrate is defective it is Class II, and the relative reduction of the signal-to-noise ratio when the sky background temperature is less than 280K has exceeded 10%.
At this time, given a 300-level contamination on the surface of the primary mirror, in order to ensure the detection performance of the system, the level of defects on the optical components must be strictly controlled within level II.
In addition, in practical applications, it is necessary to further reduce the impact of particle pollution of optical components on the signal-to-noise ratio of the system through pollution monitoring and control. First of all, different pollution detection methods are used for optical components with different pollution tolerances. For the surface of the component with a large degree of contamination tolerance, once the component is observed to be dirty, clean and maintain it.
For some surfaces with stricter cleanliness requirements, a similar monitoring template can be placed near it. On-line monitoring of the component surface can be realized through the monitoring template. When it is found that the cleanliness is below the acceptable range, the monitoring sample and the contaminated components must be cleaned at the same time.
Secondly, good environmental conditions should be selected during observation, and the exposure time of the component surface should be minimized as much as possible. During the operation of the system, molecular pollution sources such as particle pollution and oil pollution should be avoided, and workers must comply with relevant pollution guidelines before and after entering the pollution control area.
In order to reduce or even eradicate component surface contamination from the source, prevention needs to be taken from the following aspects. First of all, in the system design, the pollution-sensitive components should be kept away from the pollution source as much as possible, so that the pollution source cannot directly "see" the key surface. Secondly, when selecting component materials, the characteristics and processing technology of the materials to be selected should be verified in advance.
In addition, the cleanliness of the component surface must be controlled throughout the system assembly process, and the time of component surface exposure should be minimized.
Finally, cover measures should be taken during transportation and during non-operation. In addition, once it is found that the contamination level of the component surface exceeds the tolerance, measures need to be taken to clean the surface of the component. For example, using non-contact cleaning methods such as spraying fluid can control the cleanliness of the cleaned component surface within the 250 level ( The surface coverage of contaminated particles on the component is about 0.01%).
3. Conclusion
On the basis of the meter scattering theory, using the particle contamination model and the statistical model of the substrate defect distribution, the scattering characteristics of the optical elements of different defect levels on the substrate are analyzed when the main mirror surface contamination is 300 level, and the scattering model is established.
Finally, taking the R-C telescope system as an example, the influence on the signal-to-noise ratio is calculated. Given that the surface contamination of a given component is 300, the study shows that:
(1) With the increase of the defect level of the main mirror substrate, the amount of scattering gradually increases, and the higher the defect level of the main mirror substrate, the more obvious the forward concentration, so the higher the defect level of the main mirror substrate, the replication effect the impact is more obvious;
(2)The thermal radiation analysis of the R-C telescope system shows that for the primary mirror, secondary mirror and support mirror of the element in the field of view, the stray.
The radiant flux does not change much, but for the primary mirror ring, secondary mirror ring and truss of the elements outside the field of view, the stray radiation will increase rapidly as the amount of scattering on the surface of the primary mirror increases;
(3) The analysis of the characteristics of the sun's external stray radiation shows that with the increase of the defect level of the main mirror substrate, the solar stray radiation flux received by the detector increases significantly.
(4) The analysis of the external stray radiation characteristics of the sky background shows that when the sky background temperature does not change, the stray radiation flux decreases slightly with the increase of the defect level of the main mirror substrate. When the effective radiation temperature of the sky background changes within 200~280K, the stray radiation flux of the sky background received by the detector will gradually increase with the increase of its radiation temperature;
(5) The analysis of the system signal-to-noise ratio shows that when the radiation temperature of the sky background is constant, the signal-to-noise ratio gradually decreases with the increase of the defect level of the main mirror substrate. In addition, when the defect level of the main mirror substrate remains unchanged, as the sky background radiation temperature increases, the influence of the different defect levels of the main mirror substrate on the signal-to-noise ratio gradually decreases;
(6) The tolerance analysis of the optical components of the system shows that the defect level on the optical components needs to be strictly controlled within the II level. Therefore, in practical applications, it is necessary to strictly control the surface pollution level of the optical element and the surface defect level of the substrate to ensure that the performance of the infrared optical system meets the demand.
As an expert in infrared optical lens research for many years, Quanhom can give you some professional guidance opinions to a high degree in different places.
As an experienced manufacturer of Opto-electromechanical components, Quanhom is equipped with a professional quality inspection system and a comprehensive management team and enjoys a high reputation in the industry. Our products are sold all over the world and are used in all walks of life. Our thoughtful one-stop shopping service has also received unanimous praise from customers. If you are interested in our infrared optical lenses, please contact us immediately!
Author: You Xinghai, Zhang Bin
Journal source: Vol.47 No.3 Infrared and Laser Engineering Mar.2018
Manuscript received: 2017-10-05, revised date: 2017-11-15
References
[1] Jiang Lun, Hu Yuan, Dong Keyan, et al. Passive athermal design of dual band infrared optical system [J]. Infrared and Laser Engineering, 2015,44(11): 3353-3357. (in Chinese)
[2] Facey T A, Nonnenmacher A L. Measurement of total hemispherical emissivity contaminated mirror surfaces [C]//SPIE, 1989, 967: 308-313.
[3] Spyak P R, Wolfe W L. Scatter from particulate contaminated mirrors. Part 1: theory and experiment for polystyrene spheres and =0.632 8 [J]. Optical Engineering, 1992,31(8): 1746-1756.
[4] MIL -STD -1246C. (15FEB2002) [S]. Military Standard Product Cleanliness Levels and Ccontamination Control Program, 2002.
[5] Li Fangqing, Zhang Bin, Xiao Jing, et al. Stray light analysis of the contaminated mirror of the infrared optical system[J]. Optics and Optoelectronic Technology, 2010, 8(4): 22-25. (in Chinese)
[6] Pierre Y Bely, Matt Lallo, Larry Petro. Stray light analysis of the yardstick mission [DB/OL]. [1999 -07 -23].http:// ..........stsciedu/nms/main/repo.
[7] Tribble A C, Boyadjian B, Davis J, et al. Contamination control engineering design guidelines for the aerospace community [R]. Alabama, Marshall Space Flight Center: NASA Contractor Report, 1996: 4740.
[8] He P, Xiao J, Zhang B, et al. The influence of contaminated mirror on the flux distributions of stray radiation of infrared telescope systems [C]//SPIE, 2010, 7654: 76540T.
[9] Xiao Jing, Zhang Bin. Influence of the optical components contamination on the signal to nosie ratio in infrared optical systems [J]. Infrared and Laser Engineering, 2012, 41 (4): 1010-1016. (in Chinese)
[10] Wu Jianpeng, Luo Wenfei, Peng Jiaqi, et al. Influence of particle cluster contamination on the stray light radiation of infrared optical systems [J]. Journal of Sichuan University (Engineering Science Edition), 2010, 8(4): 22-25. (in Chinese)
[11] Dave J V. Scattering of visible light by large water spheres[J]. Applied Optics, 1969, 8(1): 155-164.
[12] Zhang Wei, Lu Yuan, Du Shiming, et al. Analysis of characteristics of Mie scattering [J]. Optical Technique, 2010, 36(6): 936-939. (in Chinese)
[13] Wang Xueyan. Research on particle size test algorithm based on Mie theory [D].an Technological University,2011. (in Chinese)
[14] Craig F Bohren, Donald R Huffman. Absorption and Scattering of Light by Small Particles [M]. US: John Wiley & Sons, Inc., 1998: 234-288.
[15]Aikens D M, Wolfe C R, Lawson J K. The use of Power Spectral Density (PSD) functions in specifying optics for the National Ignition Facility[C]//SPIE, 1995, 2576: 281-292.
[16] Yan Peipei, Fan Xuewu. Optical design and stray light analysis of R -C system [ J ] . Infrared Technology , 2011 , 33 (4): 214-218. (in Chinese)
[17] Zhou Lidan. Research on statistical law between optical component "defects" distribution and nea field quality in high power laser system [D]. Mianyang: China Academy of Engineering Physics, 2009. (in Chinese)
[18] You Xinghai, Hu Xiaochuan, Peng Jiaqi, et al. Effect of defects of component on stray radiation characteristics of infrared optical system [J]. Infrared and Laser Engineering, 2017, 46(1): 0120004. (in Chinese)
[19] Xu Deyan, Wang Qing, Gao Zhishan, et al. Current Optical Components Detection and International Standards [M]. Beijing: Science Press, 2009: 264-267. (in Chinese)
[20] Shan Yongguang, Liu Xiaofeng, He Hongbo, et al. Research progress of nodular defect in optical coatings [J]. High Power Laser and Particle Beams, 2011, 23(6): 1421-1429.(in Chinese)
[21] Tribble A C, Boyadjian B, Davis J, et a1. Contamination control engineering design guidelines for the aerospace community NASA Contractor Report [R]. Alabama: Marshall Space Flight Center, 1996: 4740.
[22] Chen P T, Hedgeland R J, Thomson S R. Surface accommodation of molecular contaminants [C]//Optical System Contamination: Effects, Measurement, Control II. International Society for Optics and Photonics, 1990: 327-336.
[23] Vest C E, Buch R M, Lenkevich M J. Materials selection as related to contamination of spacecraft surfaces [J]. Sampe Quarterly, 1988, 19(2): 29-35.
[24] Lei Min, Li Xiaoping, Miao Huaikun. Development of contamination control techniques for EUV optics surfaces [J]. Laser & Optoelectronics Progress, 2013, 50 (3): 030005. (in Chinese)