(b) Group 2 experiments. Intermediate encoded image (left) and decoded image (right)
Figure. 16 The measured PSF image is used to decode the intermediate coded image of the outdoor scene
To sum up, the current research on wavefront coding infrared imaging technology at home and abroad mainly focuses on using wavefront coding imaging technology to expand the depth of field, improve the temperature adaptation range of the infrared imaging system, reduce the aberration of the infrared optical system, and reduce the entire infrared imaging system. The volume, weight, and cost of optical systems, focusing on simulation and experimental verification of basic principles.
At this stage, the wavefront coding infrared imaging technology has the following problems to be solved:
(1)The existing wavefront coding imaging technology is difficult to apply to the athermalization design of the zoom infrared optical system, which is a difficult problem to be solved. In the design process of the wavefront coding infrared imaging system, parameters such as ordinary infrared optical system and athermalization temperature range need to be considered.
The continuous zoom of the infrared optical system will increase the difficulty of designing the parameters of the optical phase plate, and the continuous zoom of the infrared optical system will results in continuous changes in the optical PSF, increasing the difficulty of keeping the digital decoding core "matched" with the optical encoder in the digital decoding design. Continuous zoom poses challenges to the design of both optical phase plates and digital decoders.
(2)The imaging quality evaluation of wavefront coding is a basic problem faced by the technical application. In the wavefront coding infrared imaging system, the "mismatch" between optical coding and digital decoding in the information space causes "artifacts" in the decoded image, which reduces the resolution of scene details. Applications have varying degrees of impact. Therefore, combining the specific application-oriented decoding image quality evaluation is a difficult problem to be solved.
In the future, wavefront-encoded infrared imaging technology is expected to be applied in the aerospace field:
(1) Wavefront coding imaging technology is used for athermalization, lightness, and miniaturization of space infrared cameras.
For the infrared optical system with a large aperture and long focal length, the defocus amount is more sensitive to the temperature change, and the wavefront coding improves its volume, weight, and cost more obviously. The existing wavefront coding infrared imaging system mainly adopts a transmissive structure. For large aperture, long focal length, and catadioptric infrared imaging systems, the wavefront coding technology is used to reduce the volume, quality, and cost, which is also worthy of in-depth study.
(2) Wavefront coding imaging technology is expected to be used in infrared seeker anti-laser anti-jamming.
The strong laser will damage the target surface of the detector, causing dazzling and blinding. The optical encoder can spread the light spot, greatly weaken the energy convergence, and play a protective role.
The new technology, new method, and new technology of wavefront coding infrared imaging technology in the future are also worthy of in-depth exploration and research:
(1) The lamination process of optical coding components is worth exploring and researching. The production process of the optical phase plate is completed by the single-point diamond turning process, and the cost reduction is limited. With the popularization of the lamination process for domestic infrared lenses, combined with the processing error compensation method in the back-end digital decoding process, the lamination process is used to make the wavefront. Optical phase plates for encoding infrared optical systems deserve further study.
(3)The introduction of deep learning into wavefront coding infrared imaging technology is worth exploring. The digital decoding processing of the existing wavefront coding infrared imaging system usually adopts the model method, which generally has the defects of serious artifacts and noise amplification. The deep neural network has good nonlinear mapping fitting ability, and the decoding process is based on deep learning. It is expected to obtain better-decoded image effects.
(4)Wavefront coding super-resolution infrared imaging technology is worth exploring and researching. Internationally, there have been reports on the use of wavefront coding technology to improve visible-light cameras, but there have been no public reports on improving the imaging resolution of infrared cameras.
Explore and research new mechanisms, new methods, and new technologies to improve the imaging resolution of infrared cameras by using wavefront coding. It has theoretical and applied value. In the future, it is also a prospective research direction to expand the wavefront-encoded athermalized infrared imaging system to a wavefront-encoded infrared imaging system with super-resolution imaging at the same time.
The infrared thermal imaging lens studied in this paper is designed and manufactured by Quanhom, and can be used for professional experiments and analysis.
With excellent R&D technology and a strict quality inspection system, we have quickly become one of the leading manufacturers of
Opto-electromechanical components. We are committed to producing various high-quality thermal infrared lenses (LWIR, MWIR, and SWIR) according to the diverse needs of customers. Our thoughtful one-stop service has also won the unanimous praise and trust of many customers. If you want to buy our infrared thermal imaging lenses, please contact us immediately!
Journal source: Infrared and Laser Engineering, 2022, 51(1): 20210454. DOI: 10.3788/IRLA20210454
about the author:
First author: Shi Zelin
Shi Zelin, Ph.D., researcher of Shenyang Institute of Automation, Chinese Academy of Sciences, director of the Key Laboratory of Optoelectronic Information Processing, Chinese Academy of Sciences, doctoral supervisor of University of Science and Technology of China, and University of Chinese Academy of Sciences. He has been engaged in the research of optoelectronic information technology for a long time and served as the chief scientist of the 973 plan project.
His achievements won 2-second prizes of National Technological Invention Awards in 2008 and 2017, 1-second prize of National Science and Technology Progress Award in 2010, and led his team to win 1 Outstanding Scientific and Technological Achievement Award of Chinese Academy of Sciences in 2016. Authorized more than 50 invention patents and published more than 260 academic papers.
Feng Bin
Feng Bin, Ph.D., is an associate researcher at the School of Automation, Northwestern Polytechnical University. In 2011, he stayed at the Shenyang Institute of Automation, Chinese Academy of Sciences to work in advance. In 2012, he graduated from the University of Chinese Academy of Sciences with a doctorate. In 2018, he was transferred to the School of Automation, Northwestern Polytechnical University. Mainly engaged in wavefront coding infrared imaging, infrared temperature measurement, polarization imaging, target detection, deep learning applications, and other research work.
He presided over more than 10 sub-topics of the National 973 Project, sub-topics of the Innovation Special Zone Project, Shaanxi Provincial Key R&D Program Projects, and Aerospace Science and Technology Fund Projects. Served as a letter evaluation expert of the National Natural Science Foundation of China, an editorial board member of the domestic journal "Applied Optics", a reviewer of the journals "China Laser" and "Optical Journal", and won the outstanding reviewer of China Laser Magazine in 2017 and 2019; international journals Reviewer for Optics Letters, Journal of Optics, Applied Optics.
Feng Ping
Feng Ping, a master's student of the School of Automation, Northwestern Polytechnical University, has been engaged in the research of wavefront coding infrared imaging technology since 2020. She has participated in the Aerospace Science and Technology Fund, the Open Fund of the Key Laboratory of the Chinese Academy of Sciences, and the emergency research project of the New Coronary Pneumonia Epidemic Prevention and Control of Northwestern Polytechnical University.